lundi 24 septembre 2012

Tanagra - Version 1.4.47

Non iterative Principal Factor Analysis (PFA). Analyse en facteurs principaux est une technique factorielle qui cherche à mettre en évidence les variables latentes qui lient deux ou plusieurs variables actives de la base de données. A ce titre, à la différence de l’analyse en composante principales (ACP), elle s’intéresse uniquement à la variabilité partagée entre les variables. Dans les faits, elle travaille à partir d’une variante de la matrice des corrélations où pour chaque variable, sur la diagonale principale, nous remplaçons la valeur 1 par sa proportion de variance expliquée par les autres variables.

Harris Component Analysis. C’est une technique factorielle qui s’intéresse à la variabilité partagée entre les variables. Elle travaille sur une seconde variante de la matrice des corrélations où les liaisons entre deux variables sont accentuées lorsqu’elles (l’une des deux ou les deux) présentent une relation forte avec les autres variables de la base. Seule l’approche non itérative a été implémentée.

Analyse en composantes principales (ACP). L’outil est complété avec la reconstitution de la matrice de corrélation. Il est aussi réorganisé en interne afin que la structure puisse couvrir les différentes variantes de techniques factorielles pour variables quantitatives ou mixtes.

Ces trois techniques peuvent être couplées avec la rotation orthogonale des axes (FACTOR ROTATION).

Elles peuvent également être couplées avec les composants d’aide à la détection du nombre adéquat d’axes : PARALLEL ANALYSIS et BOOTSTRAP EIGENVALUES.

Page de téléchargement : setup