J’utilise indistinctement Excel (en conjonction avec Tanagra ou Sipina), R et Python pour mes travaux dirigés (TD) de data mining et de statistique à l’Université. Souvent, je demande aux étudiants de procéder à des tests d’hypothèses pour éprouver la significativité d’un ou plusieurs coefficients dans un modèle prédictif, ou encore pour calculer les intervalles de confiance de prédiction en régression, etc.
Nous sommes sur machine, il est bien évidemment hors de question d’aller consulter les tables statistiques pour obtenir les quantiles ou les p-value des lois de probabilités couramment utilisées. Dans ce tutoriel, je présente les principales fonctions pour les lois normales, Student, KHI-2 et Fisher. Je me suis en effet rendu compte que les étudiants avaient parfois du mal à faire la correspondance entre la lecture des tables et l’utilisation des fonctions qu’ils ont du mal à identifier dans les logiciels. C’est aussi l’occasion pour nous de vérifier les équivalences entre les fonctions proposées par Excel, R (package stats) et Python (package scipy). Ouf ! Du moins sur les quelques exemples illustratifs de notre document, les résultats sont parfaitement cohérents.
Mots-clés : excel, r, package stats, python, package scipy, probabilités, p-value, p-valeur, valeur-p, quantile, fractile, loi normale, loi de student, loi du khi-2, loi de fisher
Document : Calcul des probabilités et quantiles
Ce blog recense les documents pédagogiques consacrés à la data science, machine learning et big data. Les outils sont principalement les logiciels Tanagra, R et Python. [04 nov. 2022] Suite à la panne du serveur de fichiers, les posts antérieurs à mai 2015 ont été perdus, les liens sont cassés. J'ai dû créer un site à part avec les archives (depuis 2004) et les bons liens ; j'y fais figurer également les nouveaux tutoriels depuis mars 2024. Voir "Nouveau Site" ci-dessous. Ricco.