mardi 1 mai 2018

Descente de gradient stochastique sous Python

Ce tutoriel fait suite au support de cours consacré à l’application de la méthode du gradient en apprentissage supervisé. Nous travaillons sous Python. Un document similaire a été écrit pour le logiciel R dans le cadre de la régression linéaire multiple.

Nous travaillons sur un problème de classement cette-fois. Nous souhaitons estimer les paramètres de la régression logistique à partir d’un ensemble de données étiquetées. Nous utilisons le package « scikit-learn » particulièrement populaire auprès des aficionados de Python . Nous étudierons l’influence du paramétrage sur la rapidité de la convergence de l’algorithme d’apprentissage et, de manière plus générale, sur la qualité du modèle obtenu. Nous en profiterons pour détailler une petite curiosité, parce que peu mise en avant dans les supports, que constitue la construction de la courbe ROC (Receiver Operating Characteristic) en validation croisée.

Mots-clés : descente de gradient stochastique, package scikit-learn, sklearn, régression logistique, python
Didacticiel : Descente de gradient stochastique
Données et programmes : sonar dataset
Références :
Rakotomalala R., "Descente de gradient - Diapos", avril 2018.
Tutoriel Tanagra, "Descente de gradient sous R", avril 2018.