Savoir ce que pensent les "gens" (électeurs, clients, concurrents, etc.) est fondamental pour les décideurs (partis politiques, entreprise, etc.). Le web 2.0 (on parle aussi de médias sociaux ou de réseaux sociaux numériques) est un terrain privilégié pour recueillir à moindre coût l’opinion et le sentiment de tout un chacun, par rapport à une décision ou un projet politique, par rapport à un produit, etc.
Dans ce support de cours, nous décrivons les enjeux et les méthodes de la fouille d’opinions (opinion mining) et, de sa déclinaison la plus usuelle, l’analyse des sentiments (sentiment analysis). Nous sommes bien dans le domaine du text mining puisque nous travaillons à partir de données textuelles. Mais les spécificités du web peuvent amener des points de vue et des outils qui permettent d’enrichir l’analyse. Nous nous attarderons notamment sur la plateforme de microblogage Twitter, support de communication particulièrement populaire aujourd’hui.
Mots clés : text mining, fouille de textes, web mining, opinion mining, sentiment analysis, analyse des tweets
Document : Opinion mining et sentiment analysis
Références :
Aggarwal C., Zhai C., "Mining Text Data", Springer, 2012.
Russell M.A., "Mining the Social Web – Data Mining Facebook, Twitter, Linkedin, Google+, Github, and more", O’Reilly, 2013.
Ce blog recense les documents pédagogiques consacrés à la data science, machine learning et big data. Les outils sont principalement les logiciels Tanagra, R et Python. [04 nov. 2022] Suite à la panne du serveur de fichiers, les posts antérieurs à mai 2015 ont été perdus, les liens sont cassés. J'ai dû créer un site à part avec les archives (depuis 2004) et les bons liens ; j'y fais figurer également les nouveaux tutoriels depuis mars 2024. Voir "Nouveau Site" ci-dessous. Ricco.