La manipulation de documents textuels en text mining implique de nombreuses opérations de recherche, de remplacement, de nettoyage, de découpage… Il s’agit donc de pouvoir effectuer des requêtes sur du contenu qui n’est pas structuré comme le serait une base de données.
Les expressions régulières constituent un outil privilégié dans ce contexte. Elles correspondent à des modèles (motifs) qui permettent de décrire des ensembles de chaînes de caractères. Les outils tels que grep() ou gsub() de R par exemple savent les mettre à profit pour effectuer des recherches ou des rechercher / remplacer dans les documents. Le dispositif peut s’appliquer au traitement de textes bruts totalement non structurés ; il peut faire merveille également dans l’exploitation des documents semi-structurés tels que les fichiers logs.
Dans ce support de cours, je décris succinctement les idées sous-jacentes aux expressions régulières et les principaux éléments de syntaxe. Un exemple réaliste de recherche dans des SMS possiblement délictueux permet d’appréhender pleinement leur intérêt.
Mots clés : text mining, fouille de textes, expressions régulières, grep, gsub, posix étendu, perl, analyse des fichiers logs
Document : Expressions régulières sous R
Fichiers : Données et programme R
Références :
Zyntrax-Info, "Regular Expressions – User Guide".
Jwang, "Utilisation des expressions régulières sous R".
Ce blog recense les documents pédagogiques consacrés à la data science, machine learning et big data. Les outils sont principalement les logiciels Tanagra, R et Python. [04 nov. 2022] Suite à la panne du serveur de fichiers, les posts antérieurs à mai 2015 ont été perdus, les liens sont cassés. J'ai dû créer un site à part avec les archives (depuis 2004) et les bons liens ; j'y fais figurer également les nouveaux tutoriels depuis mars 2024. Voir "Nouveau Site" ci-dessous. Ricco.