Application du principe de la descente de gradient à l’apprentissage supervisé. Exemples avec la régression linéaire multiple et la régression logistique.
La volumétrie est un problème récurrent du machine learning. La majorité des algorithmes reposent sur la formulation d’une optimisation. Il devient très difficile de les mettre en œuvre sur les bases actuelles qui sont parfois aussi larges (si ce n’est plus) que longues. L’algorithme du gradient connaît un regain d’intérêt certain dans ce contexte. En effet, d’une part, il permet de revisiter les méthodes statistiques existantes comme la régression, d’autre part, il devient incontournable dans les méthodes très populaires aujourd’hui telles que le deep learning.
Ce support de cours présente le principe descente de gradient. Il montre concrètement son implémentation dans le cadre de la régression linéaire multiple et la régression logistique binaire et multinomiale. Quelques packages pour Python (scikit-learn, tensorflow / keras) et R (gradDescent) sont mis en avant.
Mots-clés : gradient descent, stochastic gradient descent, descente de gradient stochastique, régression linéaire multiple, régression logistique, python, logiciel R, tensorflow, keras, scikit-learn, gradDescent, perceptron
Support de cours : Descente de gradient
Références :
Wikipedia, "Gradient descent".
Wikipedia, "Stochastic gradient descent".
Ce blog recense les documents pédagogiques consacrés à la data science, machine learning et big data. Les outils sont principalement les logiciels Tanagra, R et Python. [04 nov. 2022] Suite à la panne du serveur de fichiers, les posts antérieurs à mai 2015 ont été perdus, les liens sont cassés. J'ai dû créer un site à part avec les archives (depuis 2004) et les bons liens ; j'y fais figurer également les nouveaux tutoriels depuis mars 2024. Voir "Nouveau Site" ci-dessous. Ricco.
vendredi 20 avril 2018
Descente de gradient - Diapos
Libellés :
App. Supervisé - Scoring,
Python,
Régression,
Régression logistique