La question de l'optimisation des hyperparamètres des algorithmes de machine learning est posée dans cette vidéo. Nous nous appuyons sur l'exploration des performances mesurées en validation croisée sur l'échantillon d'apprentissage. Nous prenons pour exemple la régression logistique binaire, avec les régression pénalisées "Ridge" et "Lasso", pour lesquels nous faisons varier le paramètre de régularisation. L'outil GridSearchCV de la librairie Scikit-Learn pour Python est mise à contribution.
Mots-clés : python, scikit-learn, régression logistique binaire, gridsearchcv
Vidéo : Hyperparamètres Ridge Lasso
Notebook + Données : Spam Dataset
Références :
"Python - Machine Learning avec scikit-learn", septembre 2015.
"Régression logistique sur les grandes bases avec scikit-learn", décembre 2020.
"Pipeline Python pour le déploiement", janvier 2021.