J'avais écrit récemment un document à propos de l'optimisation des programmes sous R ("Programmer efficacement sous R", février 2019). Dans ce tutoriel, nous étudierons cette fois-ci comment déboguer, analyse et optimiser du code en Python, via l'EDI (Environnement de Développement Intégré) SPYDER livré avec la distribution ANACONDA.
D'autres environnements de développements existent pour Python ("Here are the most popular Python IDEs / Editors", KDnuggets, Décembre 2018) mais, pour ma part, SPYDER me convient très bien au jour le jour. Je le conseille souvent à mes étudiants, en partie à cause de sa similitude avec RStudio. L'interface leur étant familière, le passage d'un langage à l'autre est moins abrupt.
Tout comme pour R, nous prétexterons de l'implémentation du leave-one-out (LOOCV – Leave-One-Out Cross-Validation) en modélisation prédictive (analyse discriminante linéaire) pour explorer les fonctionnalités proposées par SPYDER.
Mots-clés : débogueur, profileur, analyse de code, leave-one-out, python, scikit-learn
Didacticiel : Programmation efficace sous Python
Programme python et données : waveform
Références :
SPYDER: The Scientific Python Development Environment -- https://docs.spyder-ide.org/
Ce blog recense les documents pédagogiques consacrés à la data science, machine learning et big data. Les outils sont principalement les logiciels Tanagra, R et Python. [04 nov. 2022] Suite à la panne du serveur de fichiers, les posts antérieurs à mai 2015 ont été perdus, les liens sont cassés. J'ai dû créer un site à part avec les archives (depuis 2004) et les bons liens ; j'y fais figurer également les nouveaux tutoriels depuis mars 2024. Voir "Nouveau Site" ci-dessous. Ricco.