Les cartes de Kohonen (en anglais, SOM : self organizing maps) sont des réseaux de neurones orientés à deux couches : l’entrée correspond à la description des données, la sortie est organisée sous forme de grille (le plus souvent) et symbolise une organisation des données. Les cartes servent à la fois pour la réduction de dimensionnalité (d’un espace à p dimensions, nous nous projetons dans un espace 2D), pour la visualisation (les proximités sur la grille correspondent à une proximité dans l’espace initial), et la classification automatique (on peut procéder à des regroupements des neurones de la couche de sortie).
Ce support de cours décrit dans les grandes lignes les mécanismes sous-jacents aux cartes de Kohonen. L’accent est mis sur la visualisation qui est un de ses atouts forts. La mise en œuvre sous R (package kohonen) et Tanagra (KOHONEN-SOM) est également présentée. J’ai déjà écrit un tutoriel sur le sujet il y a fort longtemps (2008), un autre viendra incessamment où j’essaierai de mettre l’accent sur la visualisation et la robustesse de la méthode.
Mots-clés : som, self organizing maps, kohonen, technique de visualisation, réduction de dimensionnalité, classification automatique, clustering, cah, classification mixte, logiciel R, package kohonen
Composants : KOHONEN-SOM
Document : Kohonen SOM - Diapos
Références :
Tutoriel Tanagra, "Les cartes de Kohonen", Juillet 2008.
Tutoriel Tanagra, "Les cartes de Kohonen avec R", Août 2016.
Ce blog recense les documents pédagogiques consacrés à la data science, machine learning et big data. Les outils sont principalement les logiciels Tanagra, R et Python. [04 nov. 2022] Suite à la panne du serveur de fichiers, les posts antérieurs à mai 2015 ont été perdus, les liens sont cassés. J'ai dû créer un site à part avec les archives (depuis 2004) et les bons liens ; j'y fais figurer également les nouveaux tutoriels depuis mars 2024. Voir "Nouveau Site" ci-dessous. Ricco.