Ce tutoriel fait suite au support de cours dédié à la Régression de Poisson. Je reprends la trame et les données d'un traitement décrit dans l'ouvrage "Approaching Multivariate Analysis - A Practical Introduction" (2010, chapitre 13). Les auteurs effectuent les traitements sous SPSS. J'ai trouvé intéressant de pouvoir reproduire (ou pas) leurs résultats en effectuant l'analyse sous R avec l'outil glm() du package "stats" de R.
Mots-clés : régression de poisson, modèle de comptage, glm, logiciel R, codage disjonctif, codage imbriqué, tests de significativité, résidus déviance, résidus standardisé, levier
Didacticiel : Régression de Poisson avec R
Données et programme : Poisson Regression
Références :
P. Dugard, J. Todman, H. Staines, "Approcahing Multivariate Analysis - A Practical Introduction", Second Edition, Routeledge, 2010.
R. Rakotomalala, "Régression de Poisson - Diapos", Mai 2019.
Ce blog recense les documents pédagogiques consacrés à la data science, machine learning et big data. Les outils sont principalement les logiciels Tanagra, R et Python. [04 nov. 2022] Suite à la panne du serveur de fichiers, les posts antérieurs à mai 2015 ont été perdus, les liens sont cassés. J'ai dû créer un site à part avec les archives (depuis 2004) et les bons liens ; j'y fais figurer également les nouveaux tutoriels depuis mars 2024. Voir "Nouveau Site" ci-dessous. Ricco.